Action Recognition From Thermal Videos Using Joint and Skeleton Information

نویسندگان

چکیده

Although various studies based on thermal images have been conducted, few focused the simultaneous extraction of joints and skeleton information an object from a image, performed human action recognition using this information. Unlike in case visible light images, performing joint detection generation often leads to complete disappearance spatial such as joints. In case, it is extremely difficult extract object. Moreover, accuracy significantly reduced owing issue. Therefore, new method proposed study address these issues. method, original 1-channel image was converted into 3-channel then were combined improve performance. A generative adversarial network (GAN) used for extracting addition, research recognize actions conducted extracted by method. The combining convolutional neural (CNN) long short-term memory (LSTM). As result experiments self-collected open data, found that shows good performance compared other state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Informative joints based human action recognition using skeleton contexts

The launching of Microsoft Kinect with skeleton tracking technique opens up new potentials for skeleton based human action recognition. However, the 3D human skeletons, generated via skeleton tracking from the depth map sequences, are generally very noisy and unreliable. In this paper, we introduce a robust informative joints based human action recognition method. Inspired by the instinct of th...

متن کامل

Human Action Recognition in Videos Using Hybrid Motion Features

In this paper, we present hybrid motion features to promote action recognition in videos. The features are composed of two complementary components from different views of motion information. On one hand, the period feature is extracted to capture global motion in timedomain. On the other hand, the enhanced histograms of motion words (EHOM) are proposed to describe local motion information. Eac...

متن کامل

Action Recognition from Skeleton Data Via Analogical Generalization

Human action recognition remains a difficult problem for AI. Traditional machine learning techniques have had some success, but have two disadvantages. First, these models are typically black boxes whose internal models are not inspectable and whose results are not explainable. Second, typically massive amounts of data are needed to achieve good recognition performance. This paper describes a n...

متن کامل

Viewpoint Invariant Action Recognition using RGB-D Videos

In video-based action recognition, viewpoint variations often pose major challenges because the same actions can appear different from different views. We use the complementary RGB and Depth information from the RGB-D cameras to address this problem. The proposed technique capitalizes on the spatiotemporal information available in the two data streams to the extract action features that are lar...

متن کامل

Human Action Recognition in Videos Using Stable Features

Human action recognition is still a challenging problem and researchers are focusing to investigate this problem using different techniques. We propose a robust approach for human action recognition. This is achieved by extracting stable spatio-temporal features in terms of pairwise local binary pattern (P-LBP) and scale invariant feature transform (SIFT). These features are used to train an ML...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3051375